

Biochar: Properties and Potential as an Agricultural Amendment

Dan Strawn, University of Idaho Soil & Water Systems and
Greg Moller, University of Idaho Food Science February 16, 2021

The Cultivating Success™ Program was established by...

University of Idaho Extension

WASHINGTON STATE UNIVERSITY

Visit us at <u>www.cultivatingsuccess.org</u>

Today's Presenters

Dan Strawn

Professor of Environmental Soil Chemistry Soil and Water Systems, CALS dgstrawn@uidaho.edu https://www.uidaho.edu/cals/soil-and-water-systems/our-people/daniel-strawn

Colette DePhelps, moderator Area Educator, Community Food Systems University of Idaho Extension, Northern District

Amending soil to manage soil health, sustainability and productivity

Soil amendments: production gain vs cost

RestoreClav

Background: Soil health and management

Three Concepts for managing soil health

- 1. Soil is complex
- 2. Integrate better management
- 3. Adopt long-term goals for agriculture

Photo Credit: Rich Sanders, USDA Natural Resources Conservation Service

Concept 1: When something is complex, caring for it is complex

Human systems:

Breakdown into parts

Care and treatment

Soil complexity

Soil can be broken down into parts

Soil is a very complex set of systems working together

Concept 2: We can manage agricultural and natural ecosystems to improve soil health

Traditional agriculture

- Manage soil for maximum productivity for the least cost
- What's good for crop production is good for soil
- Soil is resilient
- Problems in soil can be quickly fixed

Aspirational agriculture

- Manage soil and crop to produce profitable yield
 - ... with an eye towards the long-term health of the soil and ecosystem
- Soil is worth investing in because it pays back dividends in terms of production and ecosystem services
- Healthy soil practices will create a more resilient soil
- Changes to the soil health should be a long-range plan

We are about 120 years into this experiment...

1200 BC

Ploughing with a yoke of horned cattle in <u>Ancient Egypt</u>. Painting from the burial chamber of <u>Sennedjem</u>, c. 1200 BC.

Early 20th-century image of a tractor ploughing an alfalfa field. Dan Albone constructed the first commercially successful gasoline-powered general-purpose tractor in 1901

Concept 3: The way forward-

Increase understanding of soil processes

Apply technology for healthy soil management practices

• Improve soil properties

- Aggregation
- Water holding capacity
- Nutrient availability
- Soil carbon
- Soil pH
- Natural nutrient cycling
- Microbes and invertebrates

Results

- Better water use efficiency
- Lower fertilizer costs
- More productivity
- Decreased soil erosion
- Carbon storage
- Improved soil gas exchange
- Less disease
- Sustainable long-term profits
- Healthy food production system

Soil amendments: Which one?

Soil amendments: Biochar Scientific papers on biochar in <u>2021</u> = 228 (over 8000 in the past 15 years)

What is Biochar? Pyrogenic carbon

- Similar, but different than charcoal
- Plant material heated in absence of oxygen
 - Produces biogas
 - Produces high carbon residual solid
- Biochar is manufactured with intent to add it to soils

Image from Colorado Biochar Resources

You can purchase biochar in large volumes

Rogue Valley Premium Biochar (4 Cu. Yds)

Potential benefits of biochar

Biochar may:

- Increases water holding capacity
- Increase nutrient availability
- Improve soil aggregation
- Increase soil biota
- Retain nutrients from leaching
- Sequester and reduce greenhouse gas emission
-overall, increase soil health and plant productivity
- Biochar in soils is analogous to a reef

Biochar properties: depend on feedstock

Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects

- <u>Agnieszka Tomczyk</u>,
- •Zofia Sokołowska &
- •Patrycja Boguta

94	Temp `	rield		Surf. Area		Ash	Rev Environ	Sci Biot	echnol (2020) 19:191-215
		120		2 12	512. N				,
Table 2 Biochar chara	cteristic in di	fferent ten	peratu	e from fi	uits and ve	getables	biomass		
3F	PT (°C)	PY (%)	pH	SSA (m ² /g)	VM (%)	A (%)	CEC (cmol/kg)	C (%)	References
Peanut shell	300	36.9	7.8	3.1	60.5	1.2	-	68,3	Ahmad et al. (2012)
Peanut shell	700	21.9	10.6	448.2	32.7	8.9	-	83.8	
Peanut straw	700	2	11.2		20	38.5	254.0		
Dairy Manure	350	-	9.2	1.6	53.5	24.2	-	55.8	Cantrell et al. (2012)
Dairy Manure	700	<u> </u>	9.9	186.5	27.7	39.5	-	56.7	
Feedlot manure	350	~	9.1	1.34	47.9	28.7	-	53.3	
Feedlot manure	700	-	10.3	145.2	19.8	44.0	-	52.4	
Poultry litter	350	~	8.7	3.9	42.3	30.7	-	51.2	
Poultry litter	700	10	10.3	50.9	18.3	46.2	-	45.9	
Separated swine solids	350	<u></u>	8.4	0.9	49.8	32.5		51.5	
Separated swine solids	700	a	9.5	4.1	13.4	52.9	-	44.0	
Furkey litter	350	÷	8.0	2.6	42.1	34.8	24	49.3	
Furkey litter	700	a	9.9	66.7	20.8	49.9		44.8	
Dairy Manure	100	97.0	8.0	1.8	-	37.0	-	36.8	Cao et al. (2009)
Dairy Manure	200	58.0	6.8	2.7	<u>100</u> 0	44.0		31.1	
Dairy Manure	350	27.0	10.5	7.1	1. 	62.0		25.2	
Dairy Manure	500	25.0	10.5	13.0	-	95.0	-	1.7	
Prunings of fruit trees	500		10.8	-	58.8	4.7	-		Castellini et al. (2015)
Cattle manure	300	÷	8.0	-	47.3	20.2	66.3		Cely et al. (2015)
Cattle manure	500	2	10.2	-	13.2	43.7	70.9	-	
Cattle-straw manure	300	-	10.1	-	24.9	38.3	65.5	-	

From Biochar for Sustainable Soils

Is biochar good for soil and plants?

It depends...

- Soil properties
 - Acidic or alkaline soil
 - Soil mineralogy: clays, sand, iron oxides, calcite
 - Nutrient availability
 - Organic matter
 - Biological organisms (including plants)
- Climate
 - Wet-dry
 - Hot-cold

- Type of biochar
 - Feedstock
 - Pyrolysis
 - Aging
 - Post treatment
- Desired outcome
 - Crop productivity
 - Soil carbon storage
 - Short- or long-term benefit

https://kno wledge.uncc d.int/bestpractice/bio charapplicationsoilamendment

Effect of biochar on plant productivity (1254 paired comparisons from 153 studies)

Combined effects of biochar properties and soil conditions on plant growth: A meta-analysis

Charles For 1000000

Yanhui Dai^a, Hao Zheng^{b,c}, Zhixiang Jiang^{a,d,*}, Baoshan Xing^{a,**}

Biochar properties

Change compared to control

Soil properties

Change compared to control

Opportunities to sequester carbon

doi:10.2489/jswc.2021.1115A

VIEWPOINT

Integrated biochar research: A roadmap James E. Amonette, Humberto Blanco-Canqui, Chuck Hassebrook, David A. Laird, Rattan Lal, Johannes Lehmann, and Deborah Page-Dumroese

The maximum sustainable Cdrawdown potential of biochar technology ...over the course of a century, could account for a third of the 1,000 Gt (1.1 × 10¹² tn) CO₂ that needs to be removed from the atmosphere.

Feb 15, 2021 report <u>The First Farmer in the US to Sequester Carbon for Cash</u> <u>Earns \$115,000 For His New Planting Strategies</u>

https://www.goodnewsnetwork.org/us-policy-to-feature-carbon-credits-from-regenerative-farming-practices/

Terra Preta: 6000 to 18,000 km² of the wooded Amazonian lowlands

N-E-W Terra Plant Growth Trials Nutrient recovery on biochar from wastewater

Water treatment using iron-modified biochar

- Mimics processes in nature to remove phosphorus and nitrogen from water
 - Wastewater treatment technology
 - Potential use to treat natural waters
- A recycling technology for nutrients
 - P is a limited resource that is mined a few places in the world
 - N is fixed from the atmosphere
- Current end-of-life for P and N is natural waters
 - Nutrient-enriched water promote algae growth
 - Decreases water quality

Biochar recovery

Total N, P, K in recovered biochar (N-E-W Terra)

Total N, P, K

Greenhouse trial

Treatments	Description					
Potting soil	Sunshine mix #2 (no nutrients added)					
Cool Terra biochar	Micronized biochar					
Fe modified BC	Treated with ferric salts to form HFO coatings					
N-E-W Terra	Injected into wastewater treatment process					

- All amendments added at 10% mass ratio
- Fertilizer amendment is MG slow-release flower formulation (N:P matches N-E-W Terra)
- Tomato plants planted after 2 weeks of germination (Early Girl variety)
- Experiment set up as a 3 x 3 randomized block design (three replicates in each block, three blocks)
- Plants grown for 35 days
- Watered as needed, with leaching minimized

Plant quality measures

- Color (SPAD meter)
 - Indicates of nitrogen status
- Height
 - Indicates vigor of growth
- Budding
 - Potential fruit production
- Biomass
 - Total growth
- Overall plant quality
 - Rated 1-5

Plant height

Height (cm)

Biomass

Biomass (g)

Overall plant quality

Plant quality rating (1-5)

Extractactable nutrients (plant available)

NO₃

Bray extractable P (estimate of plant available)

Effects of biochar on lettuce growth

Data analysis is in progress

Future research objectives

- Develop slow-release fertilizer test
- Conduct trials at different N-E-W Terra amendment rates
- Measure effects of different biochar on soil water holding capacity
- Optimize N-E-W Terra for slow P release
- Recover nutrients on biochar from a dairy operation
- Use microbe-altered N-E-W Terra to enhance P release
- Study N release and mineralization
- Test pelletization and delivery processes

Recommendation

- Do the cost analysis
- Look for long-term benefits
- Start small
- Look for ways to increase cost efficiency
- Biochar is a co-amendment
- Stay tuned for value added biochar

We are in a revolution...lots of unknowns

- Science and industry will drive new knowledge and create improved manufacturing and targeted application
- Biochar does have a future in small and large agricultural applications
- Biochar will be part of the solution to feeding our world and increasing sustainable living for a positive future

Thank you

At no point in history have we known more about the threats to our future... and had the ability to change it!

Paraphrased from Elizabeth Kolbert interview

Questions?

Please take our post-webinar evaluation!

Evaluation Link

https://uidaho.co1.qualtrics.com/jfe/form/SV_enXPaYGdz52kXB4

Tomorrow, you will receive by email

- Link to the post-webinar survey
- Link to webinar recording & slide handout

https://www.cultivatingsuccess.org/recordedwebinars

To learn about upcoming programs, please visit <u>www.cultivatingsuccess.org</u>

Upcoming Webinars

February Theme: Digging Into Soils and Compost

February 23 Vermicomposting: Vegetable Kitchen Scraps to Usable Compost

March 1-5 Soil & Water Week

March 2 Choosing the Best Irrigation System for You

March Theme: All Things Insects- Pest Management and Pollinators March 9 Encouraging Native Pollinators with Plant Diversity March 16 Wireworm Online Field Day March 23 Organic Orchard Pest Management March 30 White Rot in Garlic

https://www.cultivatingsuccess.org/webinar-series