ECOLOGICAL SOIL MANAGEMENT: AN INTRODUCTION TO SOIL SCIENCE

WASHINGTON STATE UNIVERSITY EXTENSION VERSION 2020

FOUNDATIONAL SOIL PRINCIPLES NOT COVERED TODAY

Basic soil introduction

What is soil? What is in a volume of soil? (minerals, porosity, organic matter) The disciplines of soil science How we organize the study of soil science (pedology, fertility, chemistry, physics, and biology)

Soil formation, physical properties and natural history Soil forming factors Soil texture

Soil structure Soil horizons

Typical WA soils

N.K.E.

PHOTO COURTESY: NATHAN STACEY

3.1 Definitions of soil function

What does healthy soil do for us?

3.1 Definitions of soil function

What is degraded soil?

3.1 Definitions of soil function

 3.2 Inherent & Dynamic properties

3.2 Inherent & Dynamic properties

٠

organic matter

3.3 Soil biological communities

Body Width (mm)

3.3 Soil biological communities

LITTER TRANSFORMERS SPEED DECOMPOSITION THROUGH AN "EXTERNAL RUMEN."

3.3 Soil biological communities EARTHWORMS ARE "ECOSYSTEM ENGINEERS"; CHANGING THEIR ENVIRONMENT TO SUIT THEIR PHYSIOLOGY.

3.3 Soil biological communities

EARTHWORMS DEAL WITH WASTE SIMILARLY TO FRESHWATER ORGANISMS

3.3 Soil biological communities

INCREASED AGGREGATION ALLOWS WATER TO INFILTRATE EASILY DURING A DOWN POUR AND DRAIN AFTERWARD TO LET AIR IN.

Infiltration

Runoff

Magdoff & Van Es, 2009

4.1 Soil nutrients and availability

Macro	Mic	
Carbon (C)	45.00%	Chlorine (Cl)
Oxygen (O)	45.00%	Iron (Fe)
Hydrogen (H)	6.00%	Manganese (N
Nitrogen (N)	1.50%	Boron (B)
Potassium (K)	1.00%	Zinc (Zn)
Calcium (Ca)	0.50%	Copper (Cu)
Phosphorus (P)	0.20%	Molybdenum
Magnesium (Mg	() 0.20%	Nickel (Ni)
Sulphur (S)	0.20%	

Percentages by plant dry weight

cronutrients VIn)

0.01 % 0.01% 0.005% 0.002% 0.002%

(Mo)

0.0006% 0.00001% 0.000001%

4.1 Soil nutrient and availability

Cations (+)

Ammonium NH₄⁺

Potassium K⁺

Anions (-)

Nitrate Phosphorus $NO_3^ H_2PO_4^-$

Soil Solution

• 4.1 Soil nutrient and availability

ILLUSTRATION COURTESY: UNIVERSITY OF GEORGIA EXTENSION

• 4.1 Soil nutrients and availability

рΗ

Measure of how acid or alkaline a substance is (related to H conc.) 6.0 to 7.5 ideal for most crops. Blueberries 4.5 to 5.5

)			- Soil nH						
,									
Strongly a	acidic		Neutral						
4.0	5.0	6.0	7.0	8.0					
		F	Phosphorus						
			Sulfur						
		(Calcium and Ma	gnesium					
			ron						
		N	langanese and	Boron					
		(Copper and Zind	0					
		N	lolybdonum						

• 4.1 Soil nutrients and availability

(organo-mineral complexes)

exudates, protected, etc.)

<u>Surface adsorbed</u> (soluble organic molecules)

4.1 Soil nutrient and availability

 K^+ PO_4

Elements unavailable

Weathering physical and chemical

Minerals e.g.: Hornblende ((Ca,Na)2(Mg,Fe,Al)₅(Al,Si)₈O₂₂(OH)₂) Potassium Feldspar (KAlSi₃O₈)

Chemical weathering

Very slowly available

$$Ca^{2+}$$

Mg²⁺ Fe²⁻

Elements available "nutrients"

4.1 Soil nutrient and availability

```
Mineralizable
```

slowly available

Nutrients in solution

Organic Matter (litter, amendments, root exudates, protected, etc.)

• 4.1 Soil nutrient and availability

90

Nutrient pool

Quickly available

• 4.1 Soil nutrient and availability

•

TYPICAL CEC VALUES FOR DIFFERENT SOIL TEXTURES

Soil Type	CEC n
Sands (light colored)	3
Sands (dark colored)	10
Loams	10
Silt Loams	15
Clay and clay loams	20
Organic soils	50

neq/100g

- to 5
- to 20
- to 15
- to 25
-) to 50
- to 100

4.2 Nitrogen cycle and organic matter

٠

٠

 NH_4^+ NO_3^-

Organic Matter (litter, amendments, root exudates, protected, etc.)

PHOTO COURTESY: NATHAN STACEY

5. SOIL MANAGEMENT What can/are we trying to manage?

5. SOIL MANAGEMENT What can/are we trying to manage?

Add organic matter Fertilize (including lime) Irrigate

Tillage

• 5.1 Strategies for soil management

• 5.1 Strategies for soil management

Don't allow bare soil

1. Cover crops

2. Ground covers

3. Mulch

• 5.1 Strategies for soil management

Protecting soil Smothering weeds Taking up excess nutrients Legumes add nitrogen

• 5.1 Strategies for soil management

Legume Cover Crops: \$1 To \$3 Per Pound.

Organic Fertilizers: \$5 To \$9 Per Pound.

5.1 Strategies for soil management

Hot : C/N less than 10:1 Cool : C/N 15:1 to 25:1

Woody: C/N over 30:1

PHOTO COURTESY: DOUGLAS COLLINS

5.1 Strategies for soil management

C:N LESS THAN 10:1 HOT

Fish and feather mealsEasy toPoultry/ Fresh rabbit manureLeadsSeed mealsPoter

Easy to over-apply

Leads to excess nutrient levels

Potential to harm crop

Degrade water quality

5.1 Strategies for soil management

C:N FROM 15:1 TO 25:1 COOL

and the second states

Composted:

most manures

yard debris

biosolids

Slow-release nitrogen Use as soil amendment **Releases additional nutrients in** subsequent seasons

Fresh materials:

yard debris

coffee grounds dairy manure solids

5.1 Strategies for soil management

C:N OVER 30:1 WOODY

Straw Sawdust Use as mulch Paper waste Horse bedding Leaves

Nitrogen immobilization

Carbon resource in compost

5. SOIL MANAGEMENT What tools can we use?

Reducing tillage

improving crop rotations

mulches and live cover in perennial systems

fertilizing based off soil tests

managing disturbance carefully (timing, type and intensity)

soil-health planning (building crop plan around adequate cover crops/rest

integration of perennials in annual-dominated systems

Cover crops

Organic matter

6. SOIL TESTING • 6.1 Taking a soil fertility test

6. SOIL TESTING • 6.1 Taking a soil fertility test

6. SOIL TESTING • 6.1 Taking a soil fertility test

• 6.1 Taking a soil fertility test

• 6.1 Taking a soil fertility test

Time

6. SOIL TESTING • 6.2 Interpreting soil tests

Soils are dynamic

Soil tests are ONLYa snapshot.

6. SOIL TESTING 6.2 Interpreting soil tests

USE Chemical extractant

 Measure nutrients that are expected to be plant available.

• 6.2 Interpreting soil tests

University Extension University of Missouri		Soil Test Report For Lawns and Gardens						
Columbia	23 Mun Columb (573) 88	iford Hall ia, MO 6521 32-0623		or	P.O. Box 1 Portagevill (573) 379-	60 c, MO 5431]		
Sample ID: Home	garden 1							
			Thi Law	is report is 'n Garden	for:			
· · · · ·			100	0 Univ. Av	ve			
Last Limed: unkno	own		Con	umbia, MC	0 65201	D		
SOIL TEST	RESULT	S	Ver	vlow	Low	Medi		
pHs	5.5		*****	******	******	**		
Phosphorus (P)	7	lbs/a	* * *					
Potassium (K)	191	lbs/a	****	******	*****			
Calcium (Ca)	5253	lbs/a	****	*****	******	******		
Magnesium (Mg)	495	lbs/a	****	*****	******	******		
Organic Matter:	2.6 %		Neut	r. Acidity		2.0 meq/10		
		Ferti	lizer & L	imestone	Recommen	ndations (lb		
Crop		Nitro	ogen(N)	Phospho	orus(P ₂ O ₅)	Potash (K		
1 vegetables			0.5		4.0			
2 blueberries			1.0		4.0			

Serial No.	County	Regi
H46109H-1	Boone	
Submitted	Processed	
3/2/2016	3/29/2	2007
http://www.soiltest.	psu.missouri.edu/	
	Lab No:	C06088 8
ATING ium Hig	h Very high	Exce

00 g	CEC: 16.0	meq/100g
bs/1000 sq ft)		
K ₂ O) Zinc(Zn) 0.5	Sulfur(S)	LIM 100
1.0	50	0

6. SOIL TESTING 6.2 Interpreting soil tests

			SOIL TEST RATINGS						Calculated Cation			
Test	Method	Results	Very Low	Low	Medium	Optimum	Very High	Exc	Exchange Capacity			
Soil pH	1:1	6.0						1	0.2 med	q/100g		
Buffer pH	SMP	6.77						%	6Saturat	ion		
Phosphorus (P)	M3	18 ppm							%sat	meq		
Potassium (K)	M3	96 ppm				~~		к	2.4	0.2		
Calcium (Ca)	M3	1441 ppm						Ca	70.6	7.2		
Magnesium (Mg)	M3	143 ppm						Mg	11.7	1.2		
Sulfur (S)								н	15.7	1.6		
Boron (B)												
Copper (Cu)												
Iron (Fe)								K/Mg F	Ratio:	0.21		
Manganese (Mn)								Ca/Mg	Ratio:	6.03		
Zinc (Zn)												
Sodium (Na)												
Soluble Salts												
Organic Matter	LOI	10.6 % ENR 150										
Nitrate Nitrogen												

6. SOIL TESTING • 6.2 Interpreting soil tests

SOILTEST FARM CONSULTANTS - 1 2925 DRIGGS DR Moses Lake , WA 98837		Date F Growe Sampl Field:	Received: er: led By:	5/13/20 NATHAN WSU BIC	20 I STACEY DAG PROJ 201	19 101	
Laboratory #: S20-07508			Custor	mer Acco	unt #:		
	Soil T	est Results	Custor	ner Samp	ole ID:		
Cation Exchange CEC meq/100g	19.7	pH 1:1			7.1		
		E.C. 1:1		m.mhos/	/cm		
		Est Sat Pa	ste E.C.	m.mhos/	cm		
		Effervesce	ence				
						Lb	<u>s/Acre</u>
		Ammoniu	m - N	mg/	/kg 1.6	5	6
		Organic N	latter W	.B. %	6	ENR:	
		Depth	Nitra	ate-N	Sulfate-S	Moisture	
		inches	mg/kg	lbs/acre	mg/kg	Inches	
		0 - 12	1.9	8			
		Totals	1.9	8			
		Sum of Te	ested N:	14 lbs	/acre N		

Other Tests:

6. SOIL TESTING 6.2 Interpreting soil tests

Soil tests indicate how much of a nutrient is likely to be available to plants

• 6.2 Interpreting soil tests

Soil Test Value

"No": low chance of yield increase

6. SOIL TESTING 6.2 Interpreting soil tests

Plant Nutrient

 NO_3^- NH4+

 $H_2PO_4^-/HPO_4^{-2}$

 K^+ SO₄-2 Zn+2,Fe+3,Mn+2,Cu+2 H_3BO_3 Cl-

Common Extractants KCl, CaCl₂ KCL NH₄F/HCL (Bray-P) NH₄F/CH₃COOH/HNO₃(Melich-P) NaHCO₃ (Olsen-P) NH_aOAc $Ca(H_2PO_4)_2 CaCl_2$ DTPA, EDTA Hot Water Water

6.2 Interpreting soil tests

(organo-mineral complexes)

<u>Surface adsorbed</u> (soluble organic molecules)

• 6.2 Interpreting soil tests

NO3- N in surface foot (ppm)Low<10</td>Medium10-20High20-30Excessive>30

• 6.2 Interpreting soil tests

15		Bray 1	Olse
	Low	<20	<1(
	Medium	20-40	10-2
	High	40-100	25-5
30.974	Excessive	>100	>50

Ibs. per acre (P₂O₅) 0 0-300 25 0-200 30 0-30 0 0

• 6.2 Interpreting soil tests

K Ibs. per acre (K₂O) n 100-300 om 60-250 om 0

• 6.2 Interpreting soil tests

1.0

Dolomite	Lime	Gypsum	Eemental	Nitrogen	Phosphate	Potesh	Magnesium	Sulfur	Zinc	Manganese	lion
100 score	100 score		Sulfur	N	P ₂ O ₅	K₀O	Mg	SO ₆ -S	Zn	Mn	Fe
	9000			90	40			20	10	10	

• 6.2 Interpreting soil tests

pH - the master chemical control

Strongly acidic Moderately acidic Slightly acidic Neutral Moderately alkaline Strongly alkaline

• 6.2 Interpreting soil tests

pH - SMP buffer

• 6.2 Interpreting soil tests

6. SOIL TESTING6.2 Interpreting soil tests

Cation Exchange Capacity (CEC)